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Abstract--In this paper. a thermal analysis is used to estimate the extent of evaporation of the microlayer 
in hemispherical bubble growth, in nucleate boiling of liquid metals on heated surfaces. As the bubble 
grows, evaporation of the microlayer produces a dry patch at its center, whose size depends on the 
thermal and physical properties of the system, the roughness of the heating surface, and the boiling 
pressure. It was found that the area of this patch relative to that of the microlayer (or bubble base) is 
typically very small for liquid metals, and can be neglected in most theoretical analyses of bubble growth. 
It was further found that the loss of liquid from the microlayer due to evaporation into the bubble is at 
most a few percent, in a typical case. 

Since both the calculational model and mathematical analysis involve a number of simplifyingassump- 
tions, the numerical results of this pioneering study should be considered approximate, 

NOMENCLATURE 

2zR2 = area of the hemispherical surface of 
a hemispheri~l bubble [ft”]; 
coefficient in equation (2) [ft/h”]; 
specific heat of liquid [Btu/(lb,. OF)]; 
specific heat of heating solid (or wall) 
[Btu/(lb, .“F)]; 
K Jv = coefficient in equation (4) [ft/h*]; 
coefficient in equation (1) [dimensionless]; 
thermal conductivity of liquid 
[Btu/(h. ft. OF)]; 
thermal conductivity of heating solid (or wall) 
[Btu/(h. ft. OF)]; 
exponent in equation (2) [dimensionless]; 
pressure in liquid remote from the growing 
bubble [atm]; 
total heat rate to hemispherical bubble at 
time B [Btu/h]; 
heat rate from microlayer to hemispherical 
bubble at time f!I [Btu/h]; 
heat rate from curved surface to 
hemispherical bubble at time B [Btu/h]; 
radial distance (see Fig. 2) [ft] ; 
bubble radius at time B [ft]; 
radius of dry-patch (see Fig. 2) [ft]; 
bubble radius at start of growth (0 = 0) [ft]; 
quantity defined by equation (20) 
~dimensionless]; 
value of S, when n = 4 [dimensionless]; 
value of S, when n = 1 [dimensionless]; 
value of S, when n = 0.9 [dimensionless]; 
saturation temperature corresponding to pee 
E”F1; 
temperature of vapor in bubble at time B 
c”F1; 

*This work was performed under the auspices of the U.S. 
Energy Research and Development Administration. 

TThis paper was presented at the 67th Annual Meeting of 
the A.I.Ch.E., Washington. D.C.. l-5 December, 1974. 

t WC71 temperature of heating surface at start of 
bubble growth (0 = 0) [“F]: 

V LI total volume of liquid evaporated from the 
microlayer up until the bubble has grown to 
radius R [cm3 or ft”]; 

V f!lO, total volume of microlayer formed during 
the time the bubble has grown to radius R 
[cm” or ft”]; 

v,, volume of vapor produced from V, 

c cm3 or ft”]. 

Greek symbols 

thermal diffusivity of liquid [ft’/h]; 
thermal diffusivity of heating solid (or wall) 

tft’/hl; 
microlayer thickness at time fI and radial 
distance Y [ft]; 
initial thickness of microlayer at time U, and 
radial distance r [ft]; 
time after start of bubble growth [h]: 
time required for bubble to grow to radius Y 
less than R [h]; 
latent heat of vaporization [Btujlb,]; 
molecular viscosity of liquid [lb,/(h ft)]; 
kinematic viscosity of liquid [ft’/h]; 
quantity defined by equation (17) 
[ft/(h” . OF)] ; 
value of & when n = : [ft/(h* “F)]: 
value of & when II = 1 [ft/(h* . “F)]; 
value of 4. when n = 0.9 [ft/(h* “F)]; 
density of liquid [lb,/ft3]; 
density of vapor [lb,/ft3]; 
density of heating solid (or wall) [lb,/ft’l. 

IN HEMISPHERICAL bubble growth in nucleate boiling 
on a heated surface, a very thin layer of liquid remains 
on the heated surface under the bubble. The thickness 
of this microlayer approaches zero at the point of 
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bubble nucleation. but as the bubble grows the micro- 
layer formed at its periphery gradually increases in 
thickness. The hydrodynamics of its formation has been 

studied by Cooper and Lloyd [I]. Olander and Watts 
[2], and Dwyer and Hsu [3]. As a hemispherical bubble 

grows, heat transfer from the heating surface causes the 
microlayer to evaporate into the bubble. thereby re- 
ducing its thickness. The result of this is that in the 

central region of the microlayer a dry-patch is formed. 
the final size of which depends on the characteristics 
of the boiling system. 

Because of the inapplicability of optical techniques 

to liquid metals. direct measurement ofdry-patch areas 
with these liquids have not been made. We therefore 

must resort to theoretical estimates. and the present 
paper presents the results of the first known study with 

this objective. 
Actually, it appears that very few dry-patch measure- 

ments have yet been made with ordinary liquids, where 
the results are sufficiently accurate and extensive to 
present a clear picture, Although the results of such 

studies are not directly applicable to liquid metals, they 
do have some relevance, and a few cases may be 
briefly mentioned. 

Sharp [4] was the first experimenter to observe the 
appearance of a dry-patch in the center of the micro- 
layer, when he boiled water on a polished flint-glass 
surface that contained a tiny scratch to initiate 
nucleation. In an experiment designed to allow the 
vapor bubbles to grow normally (i.e. without defor- 
mation), he observed that when the time-averaged heat 
flux was great enough, which he estimated to be in the 

range 10000 to 15000 Btu/(h. ft’). dry spots appeared 
after about 55lOms. grew with time. and then dis- 
appeared at bubble release. 

Jawurek [5] boiled methanol on a transparent film 
of stannic oxide on glass and measured dry-patches by 
using parallel monochromatic illumination from below. 

He recorded interference patterns by high-speed pho- 
tography, which gave a direct measure of dry-patch 
size. Unfortunately, he reported quantitative results for 
only a single run, for which the pressure was 180 in Hg 
abs., the time-average heat flux was 19 700 Btu/(h. ft’), 
and the subcooling was 12.8’F. The results showed 
that the dry-patch started to grow at the instant of 

bubble inception and continued to grow to a radius 
of 4 2.8 mm 33.4ms later. when the radius of the bubble 
had reached _ 7.5 mm. 

More extensive measurements of dry-patch size and 
growth rate were made by Cooper and Lloyd [b] by 
boiling toluene on glass at pressures of 1 and 2 lb/it& 
They found that the dry-patch area relative to that of 
the microlayer (base area of bubble) was quite small, 
varying from -$ per cent at the beginning of bubble 
growth to - 4 per cent at the end of the hemispherical- 
bubble-growth period. These results were obtained 
under slightly subcooled conditions (2-3 ‘F). but they 
observed that subcoolings up to 14°F had no significant 
effects on the size and growth rate of the dry-patch 
area, even though the bubble size was considerably 
reduced. 

.\A .$I.\ 9s 

Any tractable theoretical analysis of the growth of 

the dry-patch must necessarily involve a number of 
simplifying assumptions. so that the results at best can 

only be considered approximate. Cooper and Lloyd [I] 
developed an analytical method for estimating the dry- 
patch size in nucleate boiling of ordinary liquids. but 

it is inapplicable to liquid metals mainly for two 
reasons: lirst, they assumed the temperature of the 
vapor inside the bubble remained constant at I,,,, . which 
implies heat-transfer-controlled growth: and second. 
they assumed that the heating-surface temperature re- 

mained constant during bubble growth, with a linear 
temperature gradient through the microlayer. 

The following analysis gives an estimate of the dry- 

patch radius rl, at anytime 0. as a function of the radius R 
ofa hemispherical bubble. in nucleate boiling of a liquid 
metal on a flat horizontal surface. 

Dwyer and Hsu [3] have shown that microlayer 

thicknesses for liquid metals are much less than those 
for ordinary liquids. They showed that a good approxi- 

mation of the microlayer thickness at time of formation 
is given by the relation 

&) = K(I,(~,,)‘, (I) 

where K is a function of II in the standard empirical 
equation of bubble growth 

R = Co 0”. (2) 

The coefficient C’,, is a function of II. and II varies 
between the limits of i (for heat-transfer-controlled 

bubble growth) and 1 (for inertia-controlled growth). 
Bubble growth rates are generally much faster for 
liquid metals (where II is usually nearer 1 than 4) than 

for ordinary liquids (where II is usually nearer f than I). 
For example, it is estimated [7] that the bubble growth 
time for sodium boiling at 1 atm is of the order of 1 ms, 
when the bubble nuclcntion radius r. is 5 x 10-4in, 
and when the heating surface is the top side of a 
stainless-steel plate. Under these conditions, II equals 
095 and K = 0.62 [3], and according to equation (I) 
the maximum thickness of the microlayer is about 
0.01 mm. The diffusion time for this thickness will be 
of the order of (thickness)‘;ccL, or only - 2 x 10 3 ms. 

We shall therefore assume that the thickness of the 

microlayer is negligibly small compared with that of the 
heater plate. that its heat capacity is negligibly small 

compared with the rate of heat transfer through it, and 
that the temperature at any point on the sol&liquid 
interface may be taken equal to the temperature t, of 
the vapor in the bubble the moment the bubble grows 
over that point. 

We further assume that the thermal conductivity of 
the liquid is at least moderately high compared with 
that of the heater plate. These conditions, believed to 
approximate those for many boiling liquid-metal 
systems, call for negligible temperature drop through 
the microlayer compared with that in the heater plate 
near the heating surface. They also indicate negligible 
thermal time lag caused by the microlayer, as the bubble 
expands river a given point on the heating surface. 
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We next make three additional assumptions that are 
commonly made in bubble-growth analyses. The first 

of these is that the vapor in the bubble is in thermo- 

dynamic equilibrium with its bounding liquid surface; 
the second is that the heating surface is perfectly wetted; 
and the third is that the variation of the vapor tem- 
perature t,. during most of the bubble’s growth is not 
large compared to (t,, - t,.). where t,, is the temperature 
of the heating surface at 0 = 0. Regarding this last 
assumption, the pressure (and therefore t,,) drops very 
rapidly during the very early stage of bubble growth 
due to work of expansion against acceleration and 
surface-tension forces, which soon become negligible. 

Thereafter, the pressure drops much more slowly, 
because the work of expansion is consumed only in 
pushing back the liquid. 

The thickness of the outer layer of the heating plate 
in which the temperature fluctuates during boiling is 

known as the penetration length. It is assumed that 
this distance is sufficiently short [4] and the tempera- 

ture gradient therein sufficiently flat [S] at 0 = 0 (i.e. at 
start of bubble growth) that the temperature over the 
distance L can be considered uniform at t,, at 0 = 0. 

It is further assumed that the temperature of the liquid 
in which the hemispherical bubble starts to grow is also 

uniform at t,, . There are two arguments in support of 
this assumption. First, because of the long “waiting” 

periods (i.e. the time between the departure of one 
bubble and the initiation of the next at the same 
nucleation site) with, and high thermal conductivities 
of, liquid metals, the typical thermal boundary layer 
is relatively thick and the temperature gradients therein 

relatively flat. This can be shown from the analysis 
of Mikic et N/. [9] for growth of spherical bubbles 
on heated solid surfaces. Using their generalized equa- 
tion for bubble growth, it is found [7] that, in the 
case of sodium boiling at 1 atm and with an initial 

wall superheat (t,,- rbat) of 100”F, a waiting time of 
1 s gives bubble growth rates that are very nearly as 
high as those obtained with an infinite waiting time 

(i.e. flat temperature profile in the liquid at 0 = 0). 

Waiting times of the order of 1 s are rather typical 
for liquid metals [X, lo]. 

The second argument in support of the assumption 
that the temperature of the liquid in which the bubble 
starts to grow is uniform at t,, is that the bubble 
pushes the liquid thermal boundary layer ahead of it 
as it grows (Fig. I ). 

Finally, we assume unidirectional heat flow through 
the heating plate and through the microlayer to the 
bubble. Under these conditions, and on the basis of 
some of the assumptions mentioned above, the tran- 
sient heat conduction from the solid (and therefore the 
heat flux through the microlayer) is similar to that 
where the flat face of a semi-infinite, uniform-tempera- 
ture solid is suddenly brought into perfect thermal 
contact with an infinite heat sink at lower temperature. 
The plate acts like a semi-infinite solid because of the 
shortness of the transient, which causes the penetration 
length to be short relative to the thickness of a typical 
heating plate. 

Liquid- vapor 
(Llquld) Interface 

A 

’ ----.,y+, 

/‘;’ Thermal 
I/ ‘>,. ’ 

1 / 
\ /layer 

I ,’ (Vapor) I) ‘\, _< ’ / 

(Heated wall) 

FIG. 1. Schematic drawing of hemispherical 
vapor bubble growing on a heated surface, 
in nucleate boiling of a liquid metal. For 
purpose of illustration, the relative thickness 
of the microlayer is much greater than in 

actuality. 

From equation (2), we can write 

r = C,fIi, (3) 

where r is the bubble radius at anytime /3, preceding 8, 
as illustrated in Fig. 2. And from equation (l), we can 
write 

60 = H,/O,, (4) 

where H = K Jv = a constant for a given boiling 
system. 

Bubble surface 

‘at time 8 

/- 

,---. 
,’ ‘4’ 

1’ \ \ “I-\ Heotmg 

FIG. 2. Idealized calculational model of hemisphertcal 
bubble, showing microlayer and dry-patch on the heat- 
ing surface at any time 0 during growth. For purposes 
of illustration, the relative thickness of the microlayer 
and radius of the dry-patch are much greater than in 

actuality. 

Prediction of dry-patch size 

Because the heat flowing from the heating surface 
(and through the very thin microlayer) provides the 
latent heat for vaporizing the microlayer, we can write 
the heat-rate balance 

_ d6 kv(Lv,-~,) 
-PLA do = (na,)*(e-e,)+ (5) 

per unit area of microlayer, for any radial distance r, 

and for any time 0 beyond (3,. The RHS of equation (5) 
represents the local flux from the heater plate, which 
is analogous to the situation where a semi-infinite body 
at t,, is suddenly brought into thermal contact with 
an infinite sink at t,. We next proceed to eliminate 
(t,,-rt,) from equation (5) by getting an approximate 
expression for it in terms of R and 0. We do this by 
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making a heat balance on the bubble at any time II. 
This balance is 

QM = Qmi+Pc\. (6) 
where 

Qbb = rate of heat gain by the bubble, 

Q,,,[ = heat rate from the microlayer to the bubble, 
and 

QCs = heat rate from the curved surface to the bubble. 

Since the rate of bubble growth depends on the rate of 
evaporation at its liquid boundaries, and since this in 

turn depends on the total rate of heat gain, we may, 
neglecting variations in pu and i. write the heat-rate 
equation 

which gives us an expression for Qbb in terms of the 
variables R and 0. 

Let us now turn our attention to Qml. From equation 

(5), we see that the local heat flux at radial distance r 
and time 0 is given by 

k,kv, - r,.) 
qfd = (na,)@I_Hj 

which we can re-write in the form 

(Cd 1*'2"'k,,,(tw,, - t,.) 
qml = (Iror,);(Rl:“+:“);’ 

(8) 

(9) 

by substituting (R/C,)“” for 0 and (r/C,,)‘!” for 0,. The 
instantaneous heat rate Qmr from the heating surface 
under the bubble may be safely represented by 

Qmr = 2rr 
! 
rR q”,,rdr. 
0 

Substituting q,r from equation (9) into (10) gives 

the solution to which may be written in the form 

Qrn~ = ; Ww Cpwp,)%,, - r,)R2n[B(2n, f,], 

(10) 

(11) 

(12) 

where B[(2n,$] represents a beta function in which 
the arguments are 2n and i_. Values of B(2n,:) for 
different values of n over the whole range of n are given 
in Table 1. Notice that the product n[B(2n,f)], which 

appears in equation (12), only increases by 33 per cent 
as n increases from its lower limit of i_ to its upper 
limit of 1. 

Table 1. Values of the 
beta function B(2n, :) for 

various values of II 

n B(2n, 4, 

0.5 2,000 
@6 1.791 
0.7 I.635 
@8 1.513 
0.9 1:413 
1.0 1.333 

A little thought will show that if the magnitude of 
the quantity (kLCpLpL)f is close to that of (k,C,,p,)~. 
which it could well be for certain liquid-metal/solid- 

metal systems, the validity of equation (12) would not 
depend on the assumption that the heat capacity of 
the microlayer (because of its thinness) is negligible 
compared to the rate of heat transfer through it. 

Let us now get an expression for Qcs in terms of 

R, 0, and (r,,- t,,). We begin by writing the simple 
heat balance 

where 

yCs = the heat flux at the hemispherically curved 
surface of the bubble, and 

A,, = 2nR2 = the area of the hemispherical surface. 

The equation for qcs can be assumed to be the same as 
that for a spherical bubble growing in a uniformly 
heated liquid. From the asymptotic solutions of Plesset 
and Zwick [ 1 l] and Striven [ 121, the heat flux for this 
situation is given by 

q,, = (J3Mhuo - [,,I 
(rra,o)+ ’ (14) 

which represents the transient heat case in which a 
semi-infinite body is suddenly exposed to an infinite 

spherically shaped heat sink at a lower temperature. 
After substituting equation (14) into equation (13), 
expressing A,, in terms of R, and substituting kL/pLCpL 
for CI~, we finally get 

Now, substituting equations (7), (12) and (15) into (6) 
gives 

OS dR 
t wo-t,. = ,Z’ (16) 

where 

4” = __ 
,,:,? ( 

n[B(2n,i-)l(k,C,,p,,)f+(3kLC~LPL):} (17) 

and may be considered to be a parameter that char- 
acterizes the boiling behavior of the system. 

We can now eliminate (t,,,, - t,) from equation (5) by 
means of (16) and get 

where 

(18) 

(19) 

Substituting equation (17) into (19) gives 

S” = 
P”IP1. 

n[B(2n, +)I + [~~J~~j+ ’ (20) 

which is a more basic definition of the system parameter 

S”. 
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If we now convert the independent variable of time 

in equation (18) to that of radius, by replacing 6f by 

(R/C,,)‘@“), 8 by (R/Co)‘!“, and 0, by (r/C,,)‘!“, and then 
write the equation in integral form, we get 

R 

&-6 = S” 
R1!(2”) 

(Rl!U_rl!n), dR’ (21) 

Combining equations (3) and (4) by eliminating (3, 
shows that 

i i 

i!(Z@ 
6,=H& ; (22) 

and at the radius of the dry-patch, r = re, and 6 = 0. 

Making these substitutions in equation (21) gives 

This equation cannot be readily integrated in terms of 
n; but it can be easily integrated, if n is taken either at 
its lower limit of 4 or at its upper limit of 1. In liquid- 
metal boiling, the value of n is generally much nearer 1 
than 4, and at pressures below atmospheric n is 
practically 1 for essentially all of the bubble growth 
period [13]. For n to approach i_ with liquid metals, 
they must be boiled at pressures well above atmos- 

pheric, something that is seldom done. Moreover, at 
supra-atmospheric pressures, the bubbles are small (at 
time of departure) and tend to be more spherical in 
shape [ 131. However, if n were taken equal to i, it can 
be. readily shown that the integration of equation (23) 

would lead to 

:I.=* = ,&yl’~ (24) 
which says that under these conditions r,/R would be 
independent of R. 

If n is taken at its upper limit of 1, equation (23) 
integrates to 

r-,/R is proportional to R, or 

re = 1.16 x 10m4R2, (26) 

when both r, and R are expressed in cm. The insig- 
nificant size of the dry-patch under these boiling con- 
ditions is not surprising. Owing to the high boiling 

temperature (t,, = 1374°F) and low boiling pressure, 

the density of the vapor in the bubble is very low; and, 
since the vapor generated by the microlayer is only 
about half of the total, the relative amount of liquid 
evaporated from the microlayer will be extremely 
small. 

A more typical case of liquid-metal boiling is one in 

which n = 0.9 for most of the bubble’s growth. Such a 

case [ 131 is sodium boiling on a smooth Type-316- 
stainless-steel plate at 1 atm and where (t,,- trat) = 

100°F. If we apply equation (23) to this case, a good 
approximation of dry-patch size is obtained if we 
integrate the RHS assuming n = 1. If we do that, we 

obtain 

which gives the radius of the dry-patch as a function 
of R. For this particular case [ 131, we have 

&,+ = 1.2489 ft/(hh . OF), 
so.s = 2.015 x 10-4, 

Co = 16 900 ft/h”‘9, and 
H = 5.727 x 10-2ft/h’. 

Using these values, equation (27) was used to calculate 
r,/R as a function of R, and the results are shown in 
Fig. 3. 

An exact integration of the RHS of equation (23) can 

be obtained for: < n < 1 by letting 

4 = cos-‘J[l-(r,/R)““] (28) 

and transforming the equation to 

which gives the radius of the dry-patch (r,) as a function 
of the bubble radius (R). 

Let us now use equation (2.5) to calculate r,/R as a 
function of R, for a case where n is clearly 1 throughout 
the entire bubble-growth period. Such a case [13] is 
sodium boiling under a pressure of 30mm Hg on a 
smooth Type-316-stainless-steel plate, where r. = 5 x 

1O-4 in. For these conditions, it is estimated [ 131 that 

t wo - tsa, = 239”F, 
l1 = 12.28 ft/(h+ “F), 
s1 = 1.591 x 10-5, 
Co = 47 200 ft/h, and 
H = 5.818 x 10-2ft/hf. 

Using these values, we find that r,/R is extremely small, 
being only 5.8 x 10m4 at R = 5cm. We also find that 

By arbitrarily choosing values of r,/R, the RHS of this 

equation can be integrated numerically to give r, and 
r,lR as functions of n and R. For the above case where 
n = 0.9, equation (29) is also plotted in Fig. 3. The 
results fall 6 per cent below those given by (the 
approximate) equation (27). 

In this typical case of sodium boiling on a smooth 

stainless-steel plate under a pressure of 1 atm, and 
where (t,, - tsat) = 100”F, we see that the relative size 
of the dry-patch is appreciably greater than that for 
the earlier case where n = 1. However it is still small 
compared to the area of the microlayer. For example, 
at R = 5 cm, which is much greater than the estimated 
bubble departure size, r,jR is only 0.2, making the 
area of the dry-patch only 4 per cent of the bubble base. 
Owing to the many assumptions made in the derivation 
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And dividing this into equation (321 gives 

tv;- t~,,,( = 100 OF 
1% (4/z+ I)(C‘o)‘~““‘S,,[B(2n,:)]R”“-” *” 

~;fl, 6K,.l, 
(35) (k,,C;,vp,,:’ =3?>7’ Btu/(h ft “F) 

(k. c;, p 1’ -= PC l-7 Btu /(h ft "Fp,' 

A" 

(29) 

FIG. 3. Curves showing r,iR as a function of R, for 
nucleate boiling of sodium on a smooth Type-316- 
stainless-steel plate. Equations (27) and (29) represent 
approximate and exact integrations, respectively. of 

equation (23). 

of equation (23), both curves in Fig. 3 should be con- 

sidered as only approximately correct. 
It is interesting to note that the present method of 

estimating the dry-patch size in hemispherical bubble 

growth in liquid metals shows that, as II varies from 
t to 1, r,/R varies from the zeroth to the first power 
of R. For II = 0.9, the curves in Fig. 3 indicate that 
r,/R is essentially proportional to R”“. 

Extent qfevaporation jtiom the microloyer 

If, as we have just shown, the area of the dry-patch 
is negligible compared with the base area of the bubble, 
the total volume V, of liquid evaporated from the 
microlayer up to any time 0 can be expressed by 

“R 
VL = 2n 

! 
(6, - 6)r dr, (30) 

0 

li;. = +R’S&S(2n,f,]. (36) 

The fraction of vapor in the bubble (at any time 0) 
produced by the microlayer is therefore 

v 
~~~ = f!*S,n[B(2n,+)]. 

Volume of bubble 
(37) 

0, 

Eliminating S, by means of equation (20) from this 

equation leads to 

where 0 < r Q R, and R is the radius of the bubble at 
time 8. If we now substitute equation (21) into (30), 

we get 

which, after integrating, takes the simple form 

VL = $cR3S,,n[B(2n,4)], 

“I’ 

Volume of bubble 

1 
?Z 

3kC‘ I 4l 
(38) 

If ~LIL 
I 1 k,u C,,,/,,, /: 

:n[B(2n,f)] 

1 

1-t QcsIQrn~' 
(39) 

For the illustrative example given earlier in this section, 

(32) this ratio is @52. Since the area of the curved dome 
of the bubble is twice that of its base, this says that the 
average value of q, was roughly half that of Y,,,) during 
the time it took the bubble diameter to reach 2 cm. The 
main reason why q,, is so much lower than q,, is that 
the time variable in equation (14) is 0, while in equation 
(8) it is (O- 0,). 

where B(2n, 4) is the same beta function that appears in 
equation (12), values of which are given in Table 1. 

The total volume of microlayer formed up to time 0 
is obviously 

K, = 
I 

H 
&,2nrdr. (33) 

0 

Expressing a0 in terms of r by means of equations (1) 
and (3), substituting the result in equation (33), and 
then integrating, gives 

which is the fraction of the microlayer that is evap- 
orated by the time the bubble grows to radius R. 

Let ux now apply equations (32) and (35) to the 
specific case of sodium boiling on a Type-316~stainless- 
steel surface. under a pressure of 100mm Hg, and with 

a bubble nucleation radius of 5 x 10 ~‘in. And let us 
calculate 1/;, and &r:,,,, over the period it takes for the 
bubble to grow to a radius of I cm. which is estimated 
[7] to be well below the final radius of the bubble. For 

these conditions. it is estimated [13] that 

/,,-ft,;,, = 137 F,n 2 I. Co = 48 800 ft; h, K = 0.602 [3], 

S, = 3.208 x lo-‘. 1’ = 000894ft*!h. and B[(2n, $)I = 

4 (Table 1). 

Using these values, V’ = 8.96 x 1 O- ’ cm3 and IQ V,, = 

0.025. In other words, only 2.5 per cent of the original 
microlayer formation evaporated into the bubble. This 
is consistent with the conclusion reached in the previous 

section that the dry-patch area in sodium boiling is 
negligibly small. 

From equation (32). we readily obtain an expression 

for the volume of vapor produced by evaporation of 
the microlayer up to any time 0 (or value of R). It is 

CONCLUDING REMARKS 

To the authors’ knowledge, the presence of dry- 
patches in the centers of hemispherical bubbles has 
never been detected with liquid metals, that is, the 

KO = 
4nnK 413 

__. 
(4n + l)(Co)‘,“Zn) 

R(‘,n+,)& 
(34) 

characteristic double-rise and double-fall patterns in 
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the heating-surface temperature profiles (see, for 

example, Cooper and Lloyd [6]) have not been ob- 

served. Deane and Rohsenow [8] looked for such 
profiles, when boiling sodium on a 2.5-in-diam disk 
that contained a single artificial cylindrical cavity, but 
found none. If the dry-patch area in boiling sodium 
is as small as predicted here, it is doubtful that the 

temperature sensing and recording equipment usually 
employed is capable of detecting it. Heating surface 

temperatures are measured by means of small thermo- 
couples imbedded below the heating surface. 

On the basis of the simplified calculational model 
used in the present study, and on the basis of the 
equations developed therefrom, we conclude that in 
hemispherical bubble growth in nucleate boiling of 
liquid metals on smooth metallic surfaces. the area of 
the dry-patch is negligibly small compared to the base 
area of the bubble. This is consistent with the very low 

evaporation rates of the microlayer found in the 
present study. The three apparent reasons for these 
liquid-metal results are: (1) n is usually much nearer 1 
than 4. (2) the evaporation rate from the liquid at the 
hemispherical interface is estimated to be roughly the 

same as that from the microlayer, and (3) the vapor 
densities are low. 
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EVAPORATION DE LA MICROCOUCHE AU COURS DE LA CROISSANCE 
D’UNE BULLE DANS L’EBULLITION NUCLEEE DES METAUX LIQUIDES 

R&sum&L’article fait appel si une analyse thermique afin d’estimer l’&aporation de la microcouche au 
tours du d&eloppement de bulles hCmisphCriques, pour I’Cbullition nucl&e de mitaux liquides sur des 
surfaces chauffkes. A mesure que la bulle se diveloppe, I’kvaporation du film liquide produit en son centre 
une zone s&he. dont les dimensions dt-pendent des prop&&s physiques et thermiques du systtme, de la 
rugositC_ de la surface chauffante, et de la pression d’Cbullition. On a trouvt que l’aire de cette zone 
relativement it celle du film liquide (ou de la base de la bulle) est habituellement tr&s petite pour les 
mCtaux liquides, et peut itre n&gligt:e dans la plupart des analyses thkoriques de formation de bulles. 
II a Cti trouvC de plus que la perte de liquide de la microcouche par kvaporation dans la bulle atteint 
au plus quelques pour cent, dans les cas courants. 

Etant donne que le modPIe de calcul et I’analyse mathkmatique supposent un certain nombre 
d’hypotheses simplificatrices, les rCsultats numCriques de ce travail explorBtoire doivent 6tre consid& 

comme approchPs. 

VERDAMPFUNG DER MIKROSCHICHT BE1 HALBKUGELFORMIGEM 
BLASENWACHSTUM BEIM BLASENSIEDEN VON FLijSSIGEN METALLEN 

Zusammenfassung-Mit Hilfe einer thermischen Analyse wird der Bereich der Verdampfung der 
Mikroschicht bei halbkugeligem Blasenwachstum beim Blasensieden in Fliissigmetallen an einer beheizten 
Flhche abgeschatzt. Beim Anwachsen der Blase bedingt die Verdampfung der Mikroschicht eine 
Trockenstelle in ihrem Mittelpunkt, deren Grb;De abhangig ist von den thermischen und physikalischen 
Eigenschaften des Systems, der Rauhigkeit der Heizfllche und dem Siededruck. Es ergab sich. dal3 die 
Fla’che dieser Trockenstelle im Verhaltnis zu der der Mikroschicht (oder Blasenbasis) fiir Fliissigmetalle 
sehr klein ist und in den meisten theoretischen Analysen iiber das Blasenwachstum vernachlissigt 
werden kann. Es ergab sich ferner, dal3 der Fliissigkeitsverlust aus der Mikroschicht infolge von 
Verdampfung in die Blase hinein in typischen Flllen nur einige wenige Prozent betr&t. 

Da sowohl das Rechenmodell als such die mathematische Analyse eine Reihe von vereinfachenden 
Annahmen enthalten, miissen die numerischen Ergebnisse dieser Anfangsstudie als angenihert betrachtet 

werden. 
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MCFIAPEHME MMKPOCJlOR nPM POCTE FlOJIYC@EPMYECKMX nY3blPEti 
BO BPEMR nY3bIPbKOBOTO KMFIEHMR N4AKMX METAJUIOB 

AmoTaum - nptfMeH54eTCH rennoeo~ aHanti U.JR onpenenetitds pa3Mepos t4cnapetim MMK~OC~OR 
np!-, ,,OCTe IIOJlyC~eptWCKttX ny3blpeti BO BpeMSt tly3blpbKOBOTO KMtleHMIl )KMflKMX MCTWUtOB “a 

Har,,eTblX ,IOBepXHOCTStX. nO MC[YZ Tot-0 KBK ,,aCTeT tIy3blpb, t,CIIapetit,e MMKPOCflOR Bbl3blBaeT 

o6pa3osattMe CyXOrO nRTtia B er0 WHTpe, pZi3Mepbl KOTOpOrO 3BBMCRT OT TennOBblX M (PW3WleCKHX 

XapaKTept,CTMK CMCTCMbI, UtepOXOBaTOCTH IlOB’ZpXHOCTti Hai-peB2l M LWBIEHWR KtineHMR. Hairnebto, 
‘1TO OTHOUeHMC nnOU@nM 3TOrO CyXOrO nRTHa K nJ3OuaDM .MMKpOCnOfi (MIlkI OCHOBaHMK) ny3blpfl) 

06blqHO IlBnReTCR OWttb Maltbl\l ,I&nSl XGiAKMX MeTaJlnOB M MM MOmHO npetie6peYb B 60~lbtIttittCTBe 

TeO,,eTH’,eCKMX aHaJlM3OB POCTa IIY3blPR. &Inee 6bmo HatineHO. 9TO tlOTepSl ~KMAIKOCTM U3 MHK,,OC,lOR 

t? “Y3btPb 38 C%T tiCnapetttiR COCraRJlleT B 6OllbUIMHCTBe C~‘ly’laeB HeCKOJlbKO tIpOL,eHTOB LlilR TMIIWY- 

HOil CtfTyat,t4tf. 

TaK KaK t4 PaCYeTHarl MO,Wilb, M MtiTeMaTWteCKttii attanti3 nOTpe6OBanti pnn ynpoqatouuix 
nonyqettrtii. yticnettttbte pe-r,‘J,bTaTbt 3Toro tsccnenoissatitis c.1enye-r CWTaTb tlPH6NQKeHHblMM. 


