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Abstract—In this paper, a thermal analysis is used to estimate the extent of evaporation of the microlayer
in hemispherical bubble growth, in nucleate boiling of liquid metals on heated surfaces. As the bubble
grows, evaporation of the microlayer produces a dry patch at its center, whose size depends on the
thermal and physical properties of the system, the roughness of the heating surface, and the boiling
pressure. It was found that the area of this patch relative to that of the microlayer (or bubble base) is
typically very small for liquid metals, and can be neglected in most theoretical analyses of bubble growth.
It was further found that the loss of liquid from the microlayer due to evaporation into the bubble is at

most a few percent, in a typical case.

Since both the calculational model and mathematical analysis involve a number of simplifying assump-
tions, the numerical results of this pioneering study should be considered approximate,

NOMENCLATURE

27R? = area of the hemispherical surface of
a hemispherical bubble [{t*];

coefficient in equation (2) [ft/h"];

specific heat of liquid [Btu/(Ib,,. °F)];
specific heat of heating solid (or wall)
[Btu/(b,, . °F)];

K /v = coefficient in equation {4} [ft/h*];
coefficient in equation (1) [dimensionless];
thermal conductivity of liquid
[Btu/(h.ft.°F)];

thermal conductivity of heating solid (or wall)
[Btu/(h.ft.°F)];

exponent in equation (2) [dimensionless];
pressure in liquid remote from the growing
bubble [atm];

total heat rate to hemispherical bubble at
time 6 [Btu/h];

heat rate from microlayer to hemispherical
bubble at time 6 [Btu/h];

heat rate from curved surface to
hemispherical bubble at time 6 [ Btu/h];
radial distance (see Fig. 2) [ft];

bubble radius at time 8 [ft];

radius of dry-patch (see Fig. 2) [ft];

bubble radius at start of growth (6 = 0) [ft];
quantity defined by equation {20)
[dimensionless];

value of §, when n = } [dimensionless];
value of S, when n = 1 [dimensionless];
value of S, when n = 0-9 [dimensionless];
saturation temperature corresponding to p.,
[°F};

temperature of vapor in bubble at time 8

[°FI;

*This work was performed under the auspices of the U.S.
Energy Research and Development Administration.

+This paper was presented at the 67th Annual Meeting of
the A 1.Ch.E., Washington, D.C., 1-5 December, 1974.
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temperature of heating surface at start of
bubble growth (§ = 0) [*F1:

total volume of liquid evaporated from the
microlayer up until the bubble has grown to
radius R [cm?® or ft3];

total volume of microlayer formed during
the time the bubble has grown to radius R
[em? or ft°];

volume of vapor produced from ¥},

[em? or ft7].

Greek symbols
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&,
&1

G0-95

PL
pLH

s

thermal diffusivity of liquid [ft?/h];
thermal diffusivity of heating solid {or wall)
[f?/h];

microlayer thickness at time # and radial
distance r [ft];

initial thickness of microlayer at time 6, and
radial distance r [ft];

time after start of bubble growth [h};

time required for bubble to grow to radius »
less than R [h];

latent heat of vaporization [ Btu/lb,];
molecular viscosity of liquid [1b,/th.ft)];
kinematic viscosity of liquid [ft?/h];
quantity defined by equation (17)

[ft/(h . “F)];

value of &, when n = } [ft/(h*.°F)]:

value of &, when n = | [ft/(h*.°F}];

value of &, when n = 09 [fi/(h*.°F)];
density of liquid [Ib,/ft*];

density of vapor [Ib,/ft*];

density of heating solid (or walb) [1b,, /ft*].

INTRODUCTION

IN HEMISPHERICAL bubble growth in nucleate boiling
on a heated surface, a very thin layer of liquid remains
on the heated surface under the bubble. The thickness
of this microlayer approaches zero at the point of
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bubble nucleation. but as the bubble grows the micro-
layer formed at its periphery gradually increases in
thickness. The hydrodynamics of its formation has been
studied by Cooper and Lloyd [1]. Olander and Watts
[2]. and Dwyer and Hsu [3]. As a hemispherical bubble
grows, heat transfer from the heating surface causes the
microlayer to evaporate into the bubble, thereby re-
ducing its thickness. The result of this is that in the
central region of the microlayer a dry-patch is formed,
the final size of which depends on the characteristics
of the boiling system.

Because of the inapplicability of optical techniques
to liquid metals, direct measurement of dry-patch areas
with these liquids have not been made. We therefore
must resort to theoretical estimates. and the present
paper presents the results of the first known study with
this objective.

Actually, it appears that very few dry-patch measure-
ments have yet been made with ordinary liquids, where
the results are sufficiently accurate and extensive to
present a clear picture. Although the results of such
studies are not directly applicable to liquid metals, they
do have some relevance, and a few cases may be
briefly mentioned.

Sharp [4] was the first experimenter to observe the
appearance of a dry-patch in the center of the micro-
layer, when he boiled water on a polished flint-glass
surface that contained a tiny scratch to initiate
nucleation. In an experiment designed to allow the
vapor bubbles to grow normally (i.e. without defor-
mation), he observed that when the time-averaged heat
flux was great enough, which he estimated to be in the
range 10000 to 15000 Btu/(h.{t?), dry spots appeared
after about 5-10ms, grew with time, and then dis-
appeared at bubble release.

Jawurek [5] boiled methanol on a transparent film
of stannic oxide on glass and measured dry-patches by
using parallel monochromatic illumination from below.
He recorded interference patterns by high-speed pho-
tography, which gave a direct measure of dry-patch
size. Unfortunately, he reported quantitative results for
only a single run, for which the pressure was 180in Hg
abs., the time-average heat flux was 19 700 Btu/(h. ft?),
and the subcooling was 12-8°F. The results showed
that the dry-patch started to grow at the instant of
bubble inception and continued to grow to a radius
of ~2:8 mm 33-4 ms later, when the radius of the bubble
had reached ~ 7-5mm.

More extensive measurements of dry-patch size and
growth rate were made by Cooper and Lloyd [6] by
boiling toluene on glass at pressures of 1 and 2 1b/in,.
They found that the dry-patch area relative to that of
the microlayer (base area of bubble) was quite small,
varying from ~$ per cent at the beginning of bubble
growth to ~ 4 per cent at the end of the hemispherical-
bubble-growth period. These results were obtained
under slightly subcooled conditions (2-3"F). but they
observed that subcoolings up to 14°F had no significant
effects on the size and growth rate of the dry-patch
area, even though the bubble size was considerably
reduced.

ANALYSIS

Any tractable theoretical analysis of the growth of
the dry-patch must necessarily involve a number of
stmplifying assumptions. so that the results at best can
only be considered approximate. Cooper and Lloyd [ 1]
developed an analytical method for estimating the dry-
patch size in nucleate boiling of ordinary liquids, but
it is inapplicable to liquid metals mainly for two
reasons: first, they assumed the temperature of the
vapor inside the bubble remained constant at (.. which
implies heat-transfer-controlled growth: and second.
they assumed that the heating-surface temperature re-
mained constant during bubble growth, with a linear
temperature gradient through the microlayer.

The following analysis gives an estimate of the dry-
patchradius r, at anytime 0, as a function of the radius R
of a hemispherical bubble. in nucleate boiling of a liquid
metal on a flat horizontal surface.

Dwyer and Hsu [3] have shown that microlayer
thicknesses for liquid metals are much less than those
for ordinary liquids. They showed that a good approxi-
mation of the microlayer thickness at time of formation
is given by the relation

o = K(\'(?q)i, (h

where K is a function of n in the standard empirical
equation of bubble growth

R =Cy0" (2)

The coefficient C, is a function of n, and n varies
between the limits of § (for heat-transfer-controlled
bubble growth) and 1 (for inertia-controlled growth).
Bubble growth rates are generally much faster for
liquid metals (where n is usually nearer 1 than 4) than
for ordinary liquids (where # is usually nearer % than 1).
For example, it is estimated [ 7] that the bubble growth
time for sodium boiling at 1 atm is of the order of 1 ms,
when the bubble nucleation radius rq is 5 x 107 %in,
and when the heating surface is the top side of a
stainless-steel plate. Under these conditions, n equals
0-95 and K = 062 [3], and according to equation (1)
the maximum thickness of the microlayer is about
0-01 mm. The diffusion time for this thickness will be
of the order of (thickness)?/a, . or only ~2 x 10~ % ms.

We shall therefore assume that the thickness of the
microlayer is negligibly small compared with that of the
heater plate, that its heat capacity is negligibly small
compared with the rate of heat transfer through it, and
that the temperature at any point on the solid-liguid
interface may be taken equal to the temperature 1. of
the vapor in the bubble the moment the bubble grows
over that point.

We further assume that the thermal conductivity of
the liquid is at least moderately high compared with
that of the heater plate. These conditions, believed to
approximate those for many boiling liquid-metal
systems, call for negligible temperature drop through
the microlayer compared with that in the heater plate
near the heating surface. They also indicate negligible
thermal time lag caused by the microlayer, as the bubble
expands over a given point on the heating surface.
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We next make three additional assumptions that are
commonly made in bubble-growth analyses. The first
of these is that the vapor in the bubble is in thermo-
dynamic equilibrium with its bounding liquid surface;
the second is that the heating surface is perfectly wetted;
and the third is that the variation of the vapor tem-
perature t, during most of the bubble’s growth is not
large compared to (t,,,— t,,), where t,,, is the temperature
of the heating surface at 0 = 0. Regarding this last
assumption, the pressure (and therefore 1,) drops very
rapidly during the very early stage of bubble growth
due to work of expansion against acceleration and
surface-tension forces, which soon become negligible.
Thereafter, the pressure drops much more slowly,
because the work of expansion is consumed only in
pushing back the liquid.

The thickness of the outer layer of the heating plate
in which the temperature fluctuates during boiling is
known as the penetration length. It is assumed that
this distance is sufficiently short 4] and the tempera-
ture gradient therein sufficiently flat [8] at 6 = 0 (i.e. at
start of bubble growth) that the temperature over the
distance L can be considered uniform at ¢, at 6 = 0.
It is further assumed that the temperature of the liquid
in which the hemispherical bubble starts to grow is also
uniform at r,,,. There are two arguments in support of
this assumption. First, because of the long “waiting”
periods (i.e. the time between the departure of one
bubble and the initiation of the next at the same
nucleation site) with, and high thermal conductivities
of, liquid metals, the typical thermal boundary layer
is relatively thick and the temperature gradients therein
relatively flat. This can be shown from the analysis
of Mikic et al. [9] for growth of spherical bubbles
on heated solid surfaces. Using their generalized equa-
tion for bubble growth, it is found [7] that, in the
case of sodium boiling at 1 atm and with an initial
wall superheat (z,,,— t;a) of 100°F, a waiting time of
1s gives bubble growth rates that are very nearly as
high as those obtained with an infinite waiting time
(i.e. flat temperature profile in the liquid at 6 = 0).
Waiting times of the order of 1s are rather typical
for liquid metals [8, 10].

The second argument in support of the assumption
that the temperature of the liquid in which the bubble
starts to grow is uniform at r,, is that the bubble
pushes the liquid thermal boundary layer ahead of it
as it grows (Fig. 1).

Finally, we assume unidirectional heat flow through
the heating plate and through the microlayer to the
bubble. Under these conditions, and on the basis of
some of the assumptions mentioned above, the tran-
sient heat conduction from the solid (and therefore the
heat flux through the microlayer) is similar to that
where the flat face of a semi-infinite, uniform-tempera-
ture solid is suddenly brought into perfect thermal
contact with an infinite heat sink at lower temperature.
The plate acts like a semi-infinite solid because of the
shortness of the transient, which causes the penetration
length to be short relative to the thickness of a typical
heating plate.

o Liquid - vapor
(Liquid) interface
T~ ,/4
e S AY
/// [\\ N Thermat
/ // [N _alayer
K (Vapor) [ N\ <!

ﬁ + 1o (Heated »wcH_)_A :

F1G. 1. Schematic drawing of hemispherical

vapor bubble growing on a heated surface,

in nucleate boiling of a liquid metal. For

purpose of illustration, the relative thickness

of the microlayer is much greater than in
actuality.

From equation (2), we can write
r=Cqb;, (3)

where r is the bubble radius at anytime 6, preceding 0,
as illustrated in Fig. 2. And from equation (1), we can
write

o= H./0,, @)

where H = K\/v=a constant for a given boiling
system.

Bubble surface
i “at time 8
Bubble surface
at time §,
Heating
surfoce
- B
wfe - :
[SR—e -

FiG. 2. Idealized calculational model of hemispherical

bubble, showing microlayer and dry-patch on the heat-

ing surface at any time # during growth. For purposes

of illustration, the relative thickness of the microlayer

and radius of the dry-patch are much greater than in
actuality.

Prediction of dry-patch size

Because the heat flowing from the heating surface
(and through the very thin microlayer) provides the
latent heat for vaporizing the microlayer, we can write
the heat-rate balance

o dé kw(two_ [v)
—PLh =
PLYG0 ™ (na, F(O—0,)F

per unit area of microlayer, for any radial distance r,
and for any time 6 beyond 6,. The RHS of equation (5)
represents the local flux from the heater plate, which
is analogous to the situation where a semi-infinite body
at t,, is suddenly brought into thermal contact with
an infinite sink at t,. We next proceed to eliminate
(two—t.) from equation (5) by getting an approximate
expression for it in terms of R and 6. We do this by

()
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making a heat balance on the bubble at any time (.
This balance is

th = le + ch - (6)

where

Qs = rate of heat gain by the bubble,

Q.. = heat rate from the microlayer to the bubble,
and

Q., = heat ratefrom the curved surface to the bubble.

Since the rate of bubble growth depends on the rate of
evaporation at its liquid boundaries, and since this in
turn depends on the total rate of heat gain, we may,
neglecting variations in p, and A, write the heat-rate
equation

Qp = 2mp,. AR? (:TI; (7)
which gives us an expression for Qu, in terms of the
variables R and 6.

Let us now turn our attention to Q,,,. From equation
(5), we see that the local heat flux at radial distance r
and time 6 is given by

kw(’wo—lv)
= 8
I = (Rt 16 -0,)° ®
which we can re-write in the form
C )l’(zn)kw([wu—tv)
ot = 0ol — ) (9)

(mat, JH (R —r*i7)2

by substituting (R/Cy)" ™ for 6 and (r/Co)*"” for 6,. The
instantaneous heat rate Q,,; from the heating surface
under the bubble may be safely represented by

"R

Ot = 2nJ i dr. (10)
0

Substituting ¢, from equation (9) into (10) gives

_ Z(CO)I"(zn)nikw(rwo—lv) R rdr N
Gm = (o o RV pimE

the solution to which may be written in the form

(11)

le = 92_;(nkapwpw)%([wa_’tv)Rzn[B(znv %)], “2)
where B[(2n,3)] represents a beta function in which
the arguments are 2n and . Values of B(2n,%) for
different values of n over the whole range of n are given
in Table 1. Notice that the product n[B(2n,$)], which
appears in equation (12), only increases by 33 per cent
as n increases from its lower limit of 4 to its upper
limit of 1.

Table 1. Values of the
beta function B(2n, §) for
various values of n

n B(2n, %)
05 2:000
06 1-791
o7 1-635
08 1-513
09 1413
1-0 1-333

A little thought will show that if the magnitude of
the quantity (k. C,p.)* is close to that of (k,, Cp p. )}
which it could well be for certain liquid-metal/solid-
metal systems, the validity of equation (12) would not
depend on the assumption that the heat capacity of
the microlayer (because of its thinness) is negligible
compared to the rate of heat transfer through it.

Let us now get an expression for Q. in terms of
R, 6, and (t,,,—t.). We begin by writing the simple
heat balance

Qcs = Ges Acs (13)

where

4. = the heat flux at the hemispherically curved
surface of the bubble, and
Ag = 2nR? = the area of the hemispherical surface.

The equation for ¢, can be assumed to be the same as
that for a spherical bubble growing in a uniformly
heated liquid. From the asymptotic solutions of Plesset
and Zwick [11] and Scriven [12], the heat flux for this
situation is given by

_ g\/z)kL(twa - [v)
es = (mo )

, (14)

which represents the transient heat case in which a
semi-infinite body is suddenly exposed to an infinite
spherically shaped heat sink at a lower temperature.
After substituting equation (14) into equation (13),
expressing A, in terms of R, and substituting k;/p; Cpr
for oy, we finally get

Q cs T _’—"—_()T_’"

Now, substituting equations (7), (12), and (15) into (6),
gives

(15)

_6*dR

- =, 16
, o (16

Lo~ Ly
where
1 .
¢n= point In[B(21,3)]) (ky Cpn po)t +(3k Corpr)*} (17)

and may be considered to be a parameter that char-
acterizes the boiling behavior of the system.

We can now eliminate (t,,, —t,) from equation (5) by
means of (16) and get

4
¢l

—~dd = §,———=dR, 18
dé =5, 0=0,7 (13)
where
kyCopupw)t 1
S, = <—"L) - (19)
T ‘;npl,)L

Substituting equation (17) into (19) gives

Sn = Pu/l)L (20)

3k Corpt, %’
B(2n, R adifed
n{Bn 7)]+[kapwpw

which is a more basic definition of the system parameter
Se.
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If we now convert the independent variable of time
in equation (18) to that of radius, by replacing 6% by
(R/Co)*™, 0 by (R/Co)''", and 8, by (r/Co)*"", and then
write the equation in integral form, we get

R1/2m

R
50_6= S"Jvr de

Combining equations (3) and (4) by eliminating 6,

shows that
F o\ 1A2m
0o = H|— ;
° (Co)

and at the radius of the dry-patch, r =r,, and § = 0.
Making these substitutions in equation (21), gives

H r 1/(2n) R Rl,/(Zn)
- _e = ‘177‘ dR
Sn CO re (R ’"_re/n)%

This equation cannot be readily integrated in terms of
n; but it can be easily integrated, if n is taken either at
its lower limit of 4 or at its upper limit of 1. In liquid-
metal boiling, the value of n is generally much nearer 1
than 4, and at pressures below atmospheric n is
practically 1 for essentially all of the bubble growth
period [13]. For n to approach } with liquid metals,
they must be boiled at pressures well above atmos-
pheric, something that is seldom done. Moreover, at
supra-atmospheric pressures, the bubbles are small (at
time of departure) and tend to be more spherical in
shape [ 13]. However, if n were taken equal to 4, it can
be readily shown that the integration of equation (23)
would lead to

21
22

(23)

e 1
=, 24)

R =y H \* |}
T+
004

which says that under these conditions r,/R would be
independent of R.

If n is taken at its upper limit of 1, equation (23)
integrates to

(e
(32

which gives the radius of the dry-patch (r,) as a function
of the bubble radius (R).

Let us now use equation {25) to calculate r./R as a
function of R, for a case where n is clearly | throughout
the entire bubble-growth period. Such a case [13] is
sodium boiling under a pressure of 30mmHg on a
smooth Type-316-stainless-steel plate, where ro = 5 x
10~ *in. For these conditions, it is estimated [13] that

two—tsa = 239°F,
£, = 1228 ft/(h? .°F),
Sy = 1591 x 1075,
Co = 47200ft/h, and
H = 5818 x 10~ 2 f/h*.

Using these values, we find that r./R is extremely small,
being only 5-8 x 10™* at R = S5cm. We also find that

r./R is proportional to R, or

ro=116 x 107*R?, (26)

when both r, and R are expressed in cm. The insig-
nificant size of the dry-patch under these boiling con-
ditions is not surprising. Owing to the high boiling
temperature {t,,, = 1374°F) and low boiling pressure,
the density of the vapor in the bubble is very low; and,
since the vapor generated by the microlayer is only
about half of the total, the relative amount of liquid
evaporated from the microlayer will be extremely
small.

A more typical case of liquid-metal boiling is one in
which n = 09 for most of the bubble’s growth. Such a
case [13] is sodium boiling on a smooth Type-316-
stainless-steel plate at latm and where (t,,—tw) =
100°F. If we apply equation (23) to this case, a good
approximation of dry-patch size is obtained if we
integrate the RHS assuming n = 1. If we do that, we
obtain

H [r,\"® R\*/R
r(?) =’f{<rt) (7:1)
/R 4 R 3
Hn[@ +(__1) }} o
re re

which gives the radius of the dry-patch as a function
of R. For this particular case [13], we have

Eoo = 1:2489 ft/(h? . °F),
So.g = 2015 x 1074,
Co = 16900{t/h®°, and
H = 5727 x 10~ ft/ht.

Using these values, equation (27) was used to calculate
r./R as a function of R, and the results are shown in
Fig. 3.

An exact integration of the RHS of equation (23) can
be obtained for ¥+ < n < 1 by letting

¢=COS_1\/[1——(;-2/R)1/"] (28)
and transforming the equation to
H te 1(2n) ni2 dd)
s\c,) T . (29
S <C0> " J‘COS‘V’[I —(r /R smz"“([) (29)

By arbitrarily choosing values of r,/R, the RHS of this
equation can be integrated numerically to give r, and
r./R as functions of n and R. For the above case where
n = 09, equation (29) is also plotted in Fig. 3. The
results fall 6 per cent below those given by (the
approximate) equation (27).

In this typical case of sodium boiling on a smooth
stainless-steel plate under a pressure of 1atm, and
where (t,,,— tsa1) = 100°F, we see that the relative size
of the dry-patch is appreciably greater than that for
the earlier case where n = 1. However it is still small
compared to the area of the microlayer. For example,
at R = 5cm, which is much greater than the estimated
bubble departure size, r./R is only 0-2, making the
area of the dry-patch only 4 per cent of the bubble base.
Owing to the many assumptions made in the derivation
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(K, C,, P, 3375 Bfu/lh ft °F)
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P
P

Equation (27) //?
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1
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F1G. 3. Curves showing r./R as a function of R, for

nucleate boiling of sodium on a smooth Type-316-

stainless-steel plate. Equations (27) and (29) represent

approximate and exact integrations, respectively. of
equation (23).

of equation (23), both curves in Fig. 3 should be con-
sidered as only approximately correct.

It is interesting to note that the present method of
estimating the dry-patch size in hemispherical bubble
growth in liquid metals shows that, as n varies from
3 to 1, r,/R varies from the zeroth to the first power
of R. For n =09, the curves in Fig. 3 indicate that
r./R is essentially proportional to R%8%.

Extent of evaporation from the microlayer
If, as we have just shown, the area of the dry-patch
is negligible compared with the base area of the bubble,
the total volume ¥ of liquid evaporated from the
microlayer up to any time € can be expressed by
~R

v, = 2nJ (30— O)rdr,

0

(30)

where 0 < r < R, and R is the radius of the bubble at
time 6. If we now substitute equation (21) into (30),
we get

7{1/’(211)

R "R
V=2 ——————-dR |rdr, 31
- ”S"L U RV piimys ]r S

which, after integrating, takes the simple form

Vi = $rR3S,n[ B(2n, )], (32)

where B(2n, §) is the same beta function that appears in
equation (12), values of which are given in Table 1.

The total volume of microlayer formed up to time 8
is obviously

R
Vo = J o 2mrdr. (33)

(1]
Expressing d, in terms of r by means of equations (1)
and (3), substituting the result in equation (33), and
then integrating, gives

47UlK\/\’ . (4n+1)/2n

" G

And dividing this into equation (32) gives

L
o= 6K v . (35)
which 1s the fraction of the microlayer that is evap-
orated by the time the bubble grows to radius R.

Let us now apply equations (32) and (35) to the
specific case of sodium boiling on a Type-316-stainless-
steel surface. under a pressurc of 100mm Hg, and with
a bubble nucleation radius of 5 x 10" *in. And let us
calculate V; and V. /¥, over the period it takes for the
bubble to grow to a radius of | cm. which is estimated
[7] to be well below the final radius of the bubble. For
these conditions, it is estimated [13] that

Iyo—tan = 137°F,n > 1.Co = 48800 ft/h, K = 0:602 3],
S, = 3208 x 1075, v = 0:00894 ft/h. and B[(2n,1)] =
4 (Table 1).

Using these values, ¥;, = 896 x 107 ° ¢cm® and V, /V,,, =
0-025. In other words, only 2-5 per cent of the original
microlayer formation evaporated into the bubble. This
is consistent with the conclusion reached in the previous
section that the dry-patch area in sodium boiling is
negligibly small.

From equation (32), we readily obtain an expression
for the volume of vapor produced by evaporation of
the microlayer up to any time € (or value of R). It is

V. = 2 L 3 1
=% ;’T nR3S,n[B(2n, 1)]. (36)
The fraction of vapor in the bubble (at any time 0)
produced by the microlayer is therefore
|4

)
Volume of bubbie ~ . BRI (7
Eliminating S, by means of equation (20) from this
equation leads to

v,
Volume of bubble

T kGl | B9
0 [*
1+ ’L_pL{E j’ B2 5 !
{kwf,,w/)w ] n[B(2n,3)]
1
S (39)
1+ ch/le

For the illustrative example given earlier in this section,
this ratio is 0-52. Since the area of the curved dome
of the bubble is twice that of its base, this says that the
average value of g, was roughly half that of g, during
the time it took the bubble diameter to reach 2cm. The
main reason why ¢, is so much lower than g, is that
the time variable in equation (14) is 6, while in equation
(8) it is (0—0,).

CONCLUDING REMARKS

To the authors’ knowledge, the presence of dry-
patches in the centers of hemispherical bubbles has
never been detected with liquid metals, that is, the
characteristic double-rise and double-fall patterns in
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the heating-surface temperature profiles (see, for
example, Cooper and Lloyd [6]) have not been ob-
served. Deane and Rohsenow [8] looked for such
profiles, when boiling sodium on a 2-5-in-diam disk
that contained a single artificial cylindrical cavity, but
found none. If the dry-patch area in boiling sodium
is as small as predicted here, it is doubtful that the
temperature sensing and recording equipment usually
employed is capable of detecting it. Heating surface
temperatures are measured by means of small thermo-
couples imbedded below the heating surface.

On the basis of the simplified calculational model
used in the present study, and on the basis of the
equations developed therefrom, we conclude that in
hemispherical bubble growth in nucleate boiling of
liquid metals on smooth metallic surfaces, the area of
the dry-patch is negligibly small compared to the base
area of the bubble. This is consistent with the very low
evaporation rates of the microlayer found in the
present study. The three apparent reasons for these
liquid-metal results are: (1) n is usually much nearer 1
than 4, (2} the evaporation rate from the liquid at the
hemispherical interface is estimated to be roughly the
same as that from the microlayer, and (3) the vapor
densities are low.
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EVAPORATION DE LA MICROCOUCHE AU COURS DE LA CROISSANCE
D'UNE BULLE DANS L’EBULLITION NUCLEEE DES METAUX LIQUIDES

Résume—L'article fait appel & une analyse thermique afin d’estimer 'évaporation de la microcouche au
cours du développement de bulles hémisphériques, pour I'ébullition nucléée de métaux liquides sur des
surfaces chauffées. A mesure que la bulle se développe, 'évaporation du film liquide produit en son centre
une zone scche, dont les dimensions dépendent des propriétés physiques et thermiques du systéme, de la
rugosité de la surface chauffante, et de la pression d’ébullition. On a trouvé que laire de cette zone
relativement & celle du film liquide (ou de la base de la bulle) est habituellement trés petite pour les
métaux liquides, et peut étre négligée dans la plupart des analyses théoriques de formation de bulles.
Il a été trouvé de plus que la perte de liquide de la microcouche par évaporation dans la bulle atteint

au plus quelques pour cent, dans les cas courants.

Etant donné que le modéle de calcul et l'analyse mathématique supposent un certain nombre
d’hypotheses simplificatrices, les résultats numériques de ce travail exploratoire doivent étre considérés
comme approchés.

VERDAMPFUNG DER MIKROSCHICHT BEI HALBKUGELFORMIGEM
BLASENWACHSTUM BEIM BLASENSIEDEN VON FLUSSIGEN METALLEN

Zusammenfassung—Mit Hilfe einer thermischen Analyse wird der Bereich der Verdampfung der
Mikroschicht bei halbkugeligem Blasenwachstum beim Blasensieden in Flissigmetallen an einer beheizten
Fliche abgeschitzt. Beim Anwachsen der Blase bedingt die Verdampfung der Mikroschicht eine
Trockenstelle in ihrem Mittelpunkt, deren GroBe abhingig ist von den thermischen und physikalischen
Eigenschaften des Systems, der Rauhigkeit der Heizfliche und dem Siededruck. Es ergab sich, daB die
Fliche dieser Trockenstelle im Verhdltnis zu der der Mikroschicht (oder Blasenbasis) fiir Fliissigmetalle
sehr klein ist und in den meisten theoretischen Analysen liber das Blasenwachstum vernachldssigt
werden kann. Es ergab sich ferner, daB der Flissigkeitsverlust aus der Mikroschicht infolge von

Verdampfung in die Blase hinein in typischen Fillen nur einige wenige Prozent betriigt.
Da sowohl das Rechenmodell als auch die mathematische Analyse eine Reihe von vereinfachenden
Annahmen enthalten, miissen die numerischen Ergebnisse dieser Anfangsstudie als angenihert betrachtet
werden.



O. E. Dwyer and C. J. Hsu:

WCIMAPEHUE MUKPOCJIOS TIPU POCTE TMOJYCPEPUYECKUX MY3bIPEN
BO BPEM3 IY3bIPBKOBOT'O KUIMNEHUA XUIKUX METAJIJIOB

AnnoTauusi — TpuMeHsieTcs Teny1I0BON aHalM3 A5 ONPEeesIeHUs Pa3MEPOB UCTTAPEHHSA MUKPOCTOS
IpU PocTe MoJlychepudeckuX My3blped BO BpeMS Ny3bIPbKOBOTO KHMIMEHUS XUIAKUX METAJIOB HA
HarpeThbiX mMoBepxHocTAX. [To Mepe TOrO Kak pacTeT fy3bipb, MCHAPEHHE MUKPOCIOS Bbi3bIBAEeT
00pa30BaHUE CYXOTrO NATHA B €r0 LEHTPE, Pa3MEPbl KOTOPOro 3aBUCAT OT TEIUIOBbIX U (U3UYECKHX
XapakTEPUCTHK CUCTEMBI, LLIEPOXOBATOCTH TMOBEPXHOCTH HArpeBa M NaBreHUs kuneHus. Haiaewo,
YTO OTHOLUEHME TAOLIAAM FTOTO CYXOTO MATHA K MAOLAAN MHUKPOCAOS (MM OCHOBAHMIO Ny3bIps)
OOBLIYHO ABJISICTCSA OYEHb MAlIbIM M5l XKUJKHX METAN/IOB U UM MOXHO npenebpeus B GOJIbLIIMHCTRE
TEOPEeTUYECKMX aHANU30B pocTa ny3bips. Janee Ob110 HaliieHo, 4TO MOTEPA KUAKOCTH U3 MHKPOCIIOR
B IIy3bIPh 34 CYET UCIAPEHUs COCTABIISIET B OOIBUIMHCTRE C1YHAEB HECKOTBKO MPOUEHTOB /IS THITHY-
HOW CHTyalUHH.

Tak kak ¥ pacyeTHas MOACIb, M MATEMATUYECKHH aHaAu3 NoTpebOBaM paAa yNpOLIAKOLUHX
OOMyLEHHI, YUCIEHHbBIE PE3YJbTaTbl 3TOTO MCCIENOBAHHUS CJIEAYeT CYMTaTb NPUOTUKEHHBIMH,



